RT9CN

$0-90^{\circ}$ to 0-50 Turns• CANbus J1939
Industrial Grade Rotational Position Sensor
Absolute Rotary Position up to 50 turns
Aluminum or Stainless Steel Enclosure Options
IP68 / NEMA 6

GENERAL

Full Stroke Range Options	0-0.25 to 0-50 turns
Electrial Interface	CANbus SAE J1939
Protocol	Proprietary B
Accuracy	see ordering information
Repeatability	$\pm 0.05 \%$ full stroke
Resolution	essentially infinite
Enclosure Material Options powder-painted aluminum or stainless steel	
Sensor	plastic-hybrid precision potentiometer
Potentiometer Cycle Life	see ordering information
Shaft Loading	up to 35 lbs . radial and 5 lbs . axial
Weight, Aluminum (Stain	Enclosure $\quad 5 \mathrm{lbs} .(10 \mathrm{lbs}$.$) max.$

ELECTRICAL

Input Voltage	see ordering information
Input Voltage	$7-18 \mathrm{VDC}$
Input Current	60 mA max.
Address Setting (Node ID)	$0 . . .63$ set via DIP Switches
Baud Rate	$125 \mathrm{~K}, 250 \mathrm{~K}$ or 500 K set via DIP Switches
Update Rate	$10 \mathrm{~ms} .(20 \mathrm{~ms}$. available-contact factory)
Thermal Effects, Span	0.01% f.s. $/{ }^{\circ} \mathrm{F}$, max.

ENVIRONMENTAL

Enclosure
NEMA 4/4X/6, IP 67/68
Operating Temperature
-40° to $200^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.90^{\circ} \mathrm{C}\right)$
Vibration
up to 10 g to 2000 Hz maximum

Our model RT9CN communicates rotational position feedback to your PLC via the CANbus SAE J1939 interface. The heart of this sensor is a precision plastic-hybrid position potentiometer which provides a "absolute" position and does not ever have to be reset to a "home" position after a power loss or planned shutdown.

This innovative sensor is designed to meet tough NEMA4 and IP67 environmental standards, is available in fullstroke measurement ranges of $1 / 4$ to 50 turns.

Output Signal:

Outline Drawing:

DIMENSIONS ARE IN INCHES [MM]
tolerances are $\pm 0.02 \mathrm{in}$. $[\pm 0,5 \mathrm{~mm}$] unless otherwise noted

Ordering Information:

Model Number:

Sample Model Number:
RT9CN - 30-AL-25-J-500-32-SC5

(B) range:	30 turns
(A) enclosure:	powder-painted aluminum
B shaft:	.25 -in diameter
C interface:	CANbus SAE J1939
(D) baud rate:	$500 \mathrm{kbits} /$ sec.
(B) node ID:	32
(A electrical connection:	5 -meter cordset with straight plug

Full Stroke Range:

(B) order code:	R25	R50	1	2	3	5	10	20	30	50
clockwise shaft rotations, min:	0.25	0.50	1	2	3	5	10	20	30	50
accuracy (\% of f.s.):	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.2\%	0.15\%	0.15\%	0.15\%	0.15\%
potentiometer cycle life*:	2.5×10^{6}	5×10^{5}	2.5×10^{5}	2.5×10^{5}	2.5×10^{5}	2.5×10^{5}				

*-number of times the sensor shaft can be cycled back and forth from beginning to end and back to the beginning before any measurable signal degradation may occur.

Enclosure Material:
A order code: AL
powder-painted aluminum
303 stainless steel

Shaft Diameter:

Ordering Information (cont.):
Baud Rate:

(1) order code:	$\mathbf{1 2 5}$	$\mathbf{2 5 0}$	$\mathbf{5 0 0}$
125 kbaud	250 kbaud	500 kbaud	

Node ID:

select address (0-63 Decimal)

Electrical Connection:

Setting the Address (Node ID) and Baud Rate

Address Setting (Node ID)

The Address Setting (Node ID) is set via 6 switches located on the 8-pole DIP switch found on the DeviceNET controller board located inside the transducer.

The DIP switch settings are binary starting with switch number $1\left(=2^{0}\right)$ and ending with switch number $6\left(=2^{5}\right)$.

Baud Rate

The transmission baud rate may be either factory preset at the time of order or set manually at the time of installation.

The baud rate can be set using switches 7 \& 8 on the 8-pole DIP switch found on the DeviceNET controller board located inside the transducer.

CANBus Controller Board

address / baud rate switches

!
\vdots
\vdots

DIP-1 $\left(2^{0}\right)$	DIP-2 $\left(2^{1}\right)$	DIP-3 $\left(2^{2}\right)$	DIP-4 $\left(2^{3}\right)$	DIP-5 $\left(2^{4}\right)$	DIP-6 $\left(2^{5}\right)$	address $($ decimal $)$
0	0	0	0	0	0	0
1	0	0	0	0	0	1
0	1	0	0	0	0	2
\ldots						
1	1	1	1	1	1	63

DIP-7	DIP-8	baud rate
0	0	125k
1	0	250k
0	1	500k
1	1	125k

to gain access to the controller board, remove four Allen-Head Screws and separate case halves

I/O Format and Settings

repetition $=8 \mathrm{msec}$.

Identifier

	Message Priority			Future Use		J1939 Reference Proprietary B								Data Field Type*								Not Used		Node ID**					
Example -	1	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	1	0	0	1	1	0	0	1	1	1	1	1	1
Identifier Bit No. -	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Hex Value-		0				F				F				5				3				3				F			

*Sensor field data can be factory set to customer specific value. **Customer defined, set via Dips 1-6. Bit values shown for example only, see Address Setting below.

Data Field

$$
\begin{aligned}
& \mathbf{B}_{\mathbf{0}}=\text { LSB current } \% \text { of measurement range byte } \\
& \mathbf{B}_{\mathbf{1}}=\text { MSB current } \% \text { of measurement range byte } \\
& \mathbf{B}_{2}=\text { LSB current measurement count byte } \\
& \mathbf{B}_{3}=\text { MSB current measurement count byte }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{B}_{4}=\text { error flag } \\
& \mathbf{B}_{5}=\text { error flag } \\
& \mathbf{B}_{6}=\text { LSB velocity data byte } \\
& \mathbf{B}_{7}=\text { MSB velocity data byte }
\end{aligned}
$$

Current \% of Measurement Range

The Current \% of Measurement Range is a 2-byte value that expresses the current linear position as a percentage of the entire full stroke range. Resolution is $.1 \%$ of the full stroke measurement range.

This value starts at 0×0000 at the beginning of the stroke and ends at 0x03E8.

Example:

Hex	Decimal	Percent
0000	0000	0.0%
0001	0001	0.1%
0002	0002	0.2%
\ldots	\ldots	\ldots
03 E8	1000	100.0%

\section*{| | B_{7} | B_{6} | B_{5} | B_{4} | B_{3} | B_{2} | B_{1} | B_{0} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Error Flags

0x55 (yellow LED on controller board) indicates that the sensor has begun to travel beyond the calibrated range of the internal position potentiometer.

OxAA (red LED on controller board) indicates that the sensor has moved well beyond the calibrated range of the internal position potentiometer.

If either error flag occurs within the full stroke range of the sensor, the unit should be returned to the factory for repair and recalibration.

Velocity

Data in bytes $\mathbf{B}_{\mathbf{7}}-\mathbf{B}_{\mathbf{6}}$ is the change and direction of the CMC (current measurement count) over a 100 msec time period. This data can then be used to calculate velocity and direction in a post processing operation.

$\begin{gathered} \mathbf{B}_{7}-\mathbf{B}_{6} \\ \text { HEX (Decimal) } \end{gathered}$		Velocity (cts./100 msec.)
0×0000 (0)		- 32767 counts
0x7FFF (32767)		" 0 " counts (no change)
OxFFFF (65535)		32767 counts

Velocity Calculation

$\left(\frac{\text { count change }-32767}{.1 \text { sec. time period }}\right) \times\left(\frac{\text { full stroke range }}{65,535}\right)$

Sample Calculations

Clockwise Shaft Rotation (positive direction):
$\mathrm{B}_{7}-\mathrm{B}_{6}=0 \times 89 \mathrm{C} 6$ (43462 Dec.), full stroke $=1$ Turn
$\left(\frac{35270-32767}{.1 \text { sec }}\right) \times\left(\frac{1 \text { Turn }}{65,535}\right)=.38$ turns $/ \mathrm{sec}$.

Counter-Clockwise Shaft Rotation (negative direction): $\mathrm{B}_{7}-\mathrm{B}_{6}=0 \times 61 \mathrm{~A} 8$ (25000 Dec.), full stroke $=1$ Turn

$$
\left(\frac{25000-32767}{.1 \mathrm{sec}}\right) \times\left(\frac{1 \text { Turn }}{65,535}\right)=-1.2 \mathrm{turns} / \mathrm{sec} .
$$

version: 6.0 last updated: March 1, 2014

