RT9CN 0-90° to 0-50 Turns • CANbus J1939

Industrial Grade Rotational Position Sensor Absolute Rotary Position up to 50 turns Aluminum or Stainless Steel Enclosure Options IP68 / NEMA 6

GENERAL

Full Stroke Range Options	0-0.25 to 0-50 turns
Electrial Interface	CANbus SAE J1939
Protocol	Proprietary B
Accuracy	see ordering information
Repeatability	± 0.05% full stroke
Resolution	essentially infinite
Enclosure Material Options	powder-painted aluminum or stainless steel
Sensor	plastic-hybrid precision potentiometer
Potentiometer Cycle Life	see ordering information
Shaft Loading	up to 35 lbs. radial and 5 lbs. axial
Weight, Aluminum (Stainles	s Steel) Enclosure 5 lbs. (10 lbs.) max.

ELECTRICAL

Input Voltage	see ordering information
Input Voltage	7 - 18 VDC
Input Current	60 mA max.
Address Setting (Node ID)	063 set via DIP Switches
Baud Rate	125K, 250K or 500K set via DIP Switches
Update Rate	10 ms. (20 ms. available–contact factory)
Thermal Effects, Span	0.01% f.s./ºF, max.

ENVIRONMENTAL

Enclosure	NEMA 4/4X/6, IP 67/68
Operating Temperature	-40° to 200°F (-40° to 90°C)
Vibration	up to 10 g to 2000 Hz maximum

Our model RT9CN communicates rotational position feedback to your PLC via the CANbus SAE J1939 interface. The heart of this sensor is a precision plastic-hybrid position potentiometer which provides a "absolute" position and does not ever have to be reset to a "home" position after a power loss or planned shutdown.

This innovative sensor is designed to meet tough NEMA-4 and IP67 environmental standards, is available in fullstroke measurement ranges of 1/4 to 50 turns.

Output Signal:

Outline Drawing:

5.995 mm (+.000 -.025)

celesco

celesco.com • info@celesco.com

\$

.2497 in. (+.0000 -.0003)

tel: 800.423.5483 • +1.818.701.2750 • fax: +1.818.701.2799 now Measurement Specialties, Inc.

8.4 mm

1 0.64 mm

↔ t_ 0.025 in.

0.33 in.

Ordering Information (cont.):

Baud Rate:

Setting the Address (Node ID) and Baud Rate

Address Setting (Node ID)

The Address Setting (Node ID) is set via 6 switches located on the 8-pole DIP switch found on the DeviceNET controller board located inside the transducer.

The DIP switch settings are binary starting with switch number $1 (= 2^0)$ and ending with switch number $6 (= 2^5)$.

Baud	Rate
Daaa	

The transmission baud rate may be either factory preset at the time of order or set manually at the time of installation.

The baud rate can be set using switches **7** & **8** on the 8-pole DIP switch found on the DeviceNET controller board located inside the transducer.

DIP-1 (2 ⁰)	DIP-2 (2 ¹)	DIP-3 (2 ²)	DIP-4 (2 ³)	DIP-5 (2 ⁴)	DIP-6 (2 ⁵)	<i>address</i> (decimal)
0	0	0	0	0	0	0
1	0	0	0	0	0	1
0	1	0	0	0	0	2
1	1	1	1	1	1	63

CANBus Controller Board

to gain access to the controller board, remove four Allen-Head Screws and separate case halves

tel: 800.423.5483 • +1.818.701.2750 • fax: +1.818.701.2799

now Measurement Specialties, Inc.

I/O Format and Settings

.....

• Identifier —	Mess	age Pr	riority	Fut U	ure se				939 R Propri							Da	ita Fi	eld Ty	pe*			Not	Used		N	lode	(D**		
Example –	1	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	1	0	0	1	1	0	0	1	1	1	1	1	1
Identifier Bit No. –	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Hex Value –			. (0			F					F		5				3				3				F			

*Sensor field data can be factory set to customer specific value. **Customer defined, set via Dips 1-6. Bit values shown for example only, see Address Setting below.

Velocity Data

B₆

B₇

Data Field

 $\mathbf{B_0} = \mathsf{LSB}$ current % of measurement range byte

 $B_1 = MSB$ current % of measurement range byte

 B_2 = LSB current measurement count byte B_3 = MSB current measurement count byte

B₇ B₆ B₅ B₄ B₃ B₂ B₁ B₀

Current Measurement Count

The Current Measurement Count (CMC) is the output data that indicates the present position of the measuring cable. The CMC is a 16-bit value that occupies bytes B_2 and B_3 of the data field. B_2 is the LSB (least significant byte) and B_3 is the MSB (most significant byte).

The **CMC** starts at **0x0000** with the shaft in the full counter-clockwise position (at reference mark) and continues upward to the end of the stroke range stopping at **0xFFFF**. This holds true for all ranges.

Converting CMC to Degrees

If required, the CMC can easily be converted a rotary measurement expressed in degrees instead of simply counts.

This is accomplished by first dividing the CMC by 65,535 (total counts over the range) and then multiplying that value by the FSR:

$$\left(\frac{CMC}{65,535} \right) X$$
 FSR

Example:

If the full stroke range is **1 turn (360 degrees)** and the current position is **0x0FF2** (4082 Decimal) then,

version: 6.0 last updated: March 1, 2014

<u>celesco</u>

celesco.com • info@celesco.com

B7 B6 B5 B4 B3 B2 B1 B0

Current % of Measurement Range

The Current % of Measurement Range is a 2-byte value that expresses the current linear position as a percentage of the entire full stroke range. Resolution is **.1** % of the full stroke measurement range.

This value starts at **0x0000** at the beginning of the stroke and ends at **0x03E8**.

Example:

B₆ B₅ B₄ B₃ B₂ B₁ B₀

B7

Error Flags

B₄ = error flag

B₅ = error flag

B7

B₆ = LSB velocity data byte

= MSB velocity data byte

Hex	Decimal	Percent
0000	0000	0.0%
0001	0001	0.1%
0002	0002	0.2%
03E8	1000	100.0%

0x55 (yellow LED on controller board) indicates that the sensor has begun to travel beyond the calibrated

range of the internal position potentiometer.

range of the internal position potentiometer.

factory for repair and recalibration.

OxAA (red LED on controller board) indicates that

the sensor has moved well beyond the calibrated

of the sensor, the unit should be returned to the

If either error flag occurs within the full stroke range

B₇ B₆ B₅ B₄ B₃ B₂ B₁ B₀

Current

Measurement

Count

B₂

B₃

Current % of

Measurement

Range

B₀

B₁

Velocity

Error Flags

B₄

B₅

Data in bytes $\mathbf{B_7} - \mathbf{B_6}$ is the change and direction of the **CMC** (current measurement count) over a 100 msec time period. This data can then be used to calculate velocity and direction in a post processing operation.

Velocity Calculation

Sample Calculations

Clockwise Shaft Rotation (positive direction): B₇-B₆ = 0x89C6 (43462 Dec.), full stroke = 1 Turn

$$\left(\frac{35270 - 32767}{.1 \text{ sec}}\right) \times \left(\frac{1 \text{ Turn}}{65,535}\right) = .38 \text{ turns/ sec.}$$

Counter-Clockwise Shaft Rotation (negative direction): $B_7-B_6 = 0x61A8$ (25000 Dec.), full stroke = 1 Turn

 $\left(\frac{25000 - 32767}{.1 \text{ sec}}\right) \times \left(\frac{1 \text{ Turn}}{65,535}\right) = -1.2 \text{ turns/ sec.}$