PT9232
 Heavy Industrial • RS232 Communication

Linear Position/Velocity to 550 inches (1400 cm)
 Aluminum or Stainless Steel Enclosure Options
 VLS Option To Prevent Free-Release Damage
 IP68 • NEMA 6 Protection • Hazardous Area Certification

GENERAL

Full Stroke Ranges	0-75 to 0-550 inches
Electrical Interface	RS232
Format	HEX
Accuracy	$\pm 0.10 \%$ full stroke
Repeatability	$\pm 0.02 \%$ full stroke
Resolution	\pm 0.003\% full stroke
Measuring Cable stain	less steel or thermoplastic
Enclosure Material powder-painted alum	inum or 303 stainless steel
Sensor plastic-hyb	d precision potentiometer
Potentiometer Cycle Life	$\geq 250,000$ cycles
Maximum Retraction Acceleration	see ordering information
Maximum Velocity	see ordering information
Weight, Aluminum (Stainless Steel) Enclosure	$8 \mathrm{lbs} .(16 \mathrm{lbs}$.$) , max.$

ELECTRICAL

Input Voltage	$9 . . .22 \mathrm{VDC}$
Input Current	40 mA
Baud Rate	9600 (selectable to 38.4 K)
Update Rate	32 msec

ENVIRONMENTAL

Enclosure
Operating Temperature
Vibration

NEMA 4/4X/6, IP 67/68 -40° to $200^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.90^{\circ} \mathrm{C}\right)$ up to 10 g to 2000 Hz maximum

The PT9232 delivers position feedback via RS232 serial communication to your data acquisition or controller system. The PT9232 sends a raw 16 -bit count from 0000 H to FFFFH. Additionally this device can be set to continuously send data or send data only when polled.

As the internal position sensing element is a precision potentiometer, this transducer maintains current accurate position even during power loss and does not need to be reset to a "home" position.

Output Signal:

no parity bit

Data Frame

6 byte Hex string:

Important! All communications to/from the transducer are in HEX!
User Commands:

	User Command				Sensor Response			
Description	<CMD>	$<B_{0}>$	$<B_{1}>$	$<B_{2}>$	<CMD>	$<B_{0}>$	$<B_{1}>$	$<\mathrm{B}_{2}>$
Get Sensor Info	0x05	0x00	0x00	0x00	0x05	version ${ }^{(4)}$	date ${ }^{(5)}$	date ${ }^{(5)}$
Get Serial Number	0×15	0x00	0x00	0x00	0×15		al numbe	
Start Continuous Data	0×25	0x00	0x00	0x00	0×25	0×00	0×00	0×00
Stop Continuous Data	0×35	0x00	0x00	0x00	0×35	0x00	0x00	0x00
Get Position Data	0×45	0x00	0x00	0x00	0×45	CMC ${ }^{(1)}$	CMC ${ }^{(1)}$	status ${ }^{(2)}$

${ }^{(1)}$ CMC - Current Measurement Count (Position)

The Current Measurement Count (CMC) is the output data that indicates the present position of the measuring cable.

The CMC is a 16 -bit value that occupies the first two bytes (B_{0} and B_{1}) of the data field. B_{0} is the MSB (most significant byte) and B_{1} is the LSB (least significant byte).

The CMC starts at 0000 H with the measuring cable fully retracted and continues upward to the end of the stroke range stopping at FFFFH. This holds true for all ranges.

${ }^{(2)}$ Status

The status byte is used as a flag to indicate the validity of the position signal that the internal electronics receives from the potentiometer.

Flags are as follows:
$0 \times 00=$ GREEN, $0 \times 55=$ YELLOW, $0 \times A A=$ RED
A "green" flag shows everything 0K. A "yellow" or "red" flag indicates that the sensor has either been extended beyond its range or that there is a problem with the potentiometer.

${ }^{(3)}$ Serial Number

Each sensor has it's own unique serial number. This information can be retrieved by sending the sensor the "Get Serial Number" command.

The serial number is a 3 byte value from which ranges from 0 to 9999999 (decimal).

(4) Version

This is a single byte value (0-255 decimal) which indicates the currently installed firmware version of the sensor.

(5) Date

This is a 2 byte value showing the date of currently installed firmware. This value ranges from 01011 12319 (decimal). Format is MMDDY. While the month and day are expressed as two digit numbers the year is expressed in a single digit only.

Example: $08054=$ August 5, 2004

Baud Rate

The baud rate can be set using switches 7 \& 8 on the 8 -pole DIP switch found on the rs 232 controller board located inside the transducer.

DIP-7	DIP-8	baud rate	
0	0	9600	
1	0	19200	1 $4=00$
0	1	38400	
1	1	9600	

RS232 Controller Board and DIP Switch Location

Fig. 1 - Outline Drawing (18 oz. cable tension only)

dIMENSIONS ARE IN INCHES [MM]
tolerances are 0.03 IN . [0.5 MM] unless otherwise noted.

	MEASURING CABLE			
RANGE	$\varnothing .031$ in. $\varnothing .034$ in. $\varnothing .047$ in. $\varnothing .062$ in.			
75	n/a	0.22	0.29	0.37
100	n/a	0.29	0.39	0.49
150	n/a	0.44	0.59	0.73
200	n/a	0.58	0.79	0.98
250	n/a	0.73	0.98	1.22
300	n/a	0.88	1.18	1.47
350	n/a	1.02	1.38	1.71
400	n/a	1.17	1.57	1.96
450	n/a	1.31	1.77	n / a
500	n/a	1.46	1.97	n / a
550	1.61	1.61	n / a	n / a

* tolerance $=+.005-.001[+.13-.03]$
** tolerance $=+.005-.005[+.13-.13]$

Ordering Information:

Ordering Information (cont.):

Enclosure Material:

(1) order code:

AL
powder-painted aluminum

SS
303 stainless

Measuring Cable:

B order code:	N34	S47	V62	S31
	$\varnothing .034$-inch nylon-coated stainless steel available in all ranges	$\varnothing .047$-inch stainless steel	\varnothing.062-inch thermoplastic	$\varnothing .031$-inch stainges up to 500 inches steel
	all ranges up to $\mathbf{4 0 0}$ inches	$\mathbf{5 5 0}$ inch range only		

Measuring Cable Tension:

C order code:	26		52	
tension (30\%):	18 oz .		36 oz .	
enclosure material:	aluminum	stainless steel	aluminum	stainless steel
max. acceleration:	1 G	. 33 G	5 G	2 G
max. velocity:	60 inches/sec	20 inches/sec	200 inches/sec	80 inches/sec
		standard housing see fig 1.		dual-spring housing see fig 2.

Cable Exit:

Electrical (nnnortinn:

Fig. 2 - Outline Drawing (36 oz. cable tension only)

RANGE	MEASURING CABLE			
	$\varnothing .031 \mathrm{in}$.	$\varnothing .034$ in.	$\varnothing .047 \mathrm{in}$.	$\varnothing .062$ in.
75	n/a	0.22	0.29	0.37
100	n/a	0.29	0.39	0.49
150	n/a	0.44	0.59	0.73
200	n/a	0.58	0.79	0.98
250	n/a	0.73	0.98	1.22
300	n/a	0.88	1.18	1.47
350	n/a	1.02	1.38	1.71
400	n/a	1.17	1.57	1.96
450	n/a	1.31	1.77	n/a
500	n/a	1.46	1.97	n/a
550	1.61	1.61	n/a	n/a

dIMENSIONS ARE IN INCHES [MM]
tolerances are 0.03 IN. [0.5 MM] unless otherwise noted.

* tolerance $=+.005-.001$ [+. $13-.03]$
** tolerance $=+.005-.005[+.13-.13]$

VLS Option - Free Release Protection

The patented Celesco Velocity Limiting System (VLS) is an option for PT9000 Series cable extension transducers that limits cable retraction to a safe 40 to 55 inches per second for the single spring option and 40 to 80 inches per second for the higher tension dual spring option.

The VLS option prevents the measuring cable from ever reaching a damaging velocity during an accidental free release. This option is ideal for mobile applications that require frequent cable disconnection and reconnection. It prevents expensive unscheduled downtime due to accidental cable mishandling or attachment failure.

How To Configure Model Number for VLS Option:

creating VLS model number (example)...

1. select PT9232 model

PT9232-0100-111-1110 PX 9232-0100-111-1110
3. $\mathrm{add}^{\prime V} \mathrm{VLS}$ "
4. completed model number !

VLS + 9232-0100-111-1110
VLS9232-0100-111-1110

